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Problem Statement

Solve a system Hx = b, H Hermitian or non-Hermitian using Krylov

subspace iterative methods

Km(H, r0) = span{r0, Hr0, H
2r0, . . . , H

m−1r0}.

Given x0, r0 = b − Hx0, find approximation

xm ∈ x0 + Km(H, r0),

satisfying some property:

Petrov-Galerkin, e.g., GMRES, MINRES:

xm = arg min{‖b − Hx‖2}, x ∈ x0 + Km(H, r0)

Galerkin, e.g., FOM, CG: b − Hxm ⊥ Km(H, r0)
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Krylov subspace methods (cont.)

• Methods work by suitably choosing a basis of Km(H, r0)

• Let v1, v2, . . . , vm be such a basis, chosen to be orthonormal.

• With Vm = [v1, v2, . . . , vm], obtain Arnoldi relation:

HVm = Vm+1Hm+1,m = VmHm + hm+1,mvm+1e
T
m

Hm+1,m is (m + 1) × m upper Hessenberg

• Each method finds ym so that xm = x0 + Vmym

• Main costs:

1. Matrix-vector product: Hvk

2. Orthogonalization

3. Storage (if there is no recursion)
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This Talk

• Consider the case when one does not fully orthogonalize:

Truncated methods.

• Reduce the cost of matrix-vector product when H is either

– Not known exactly

– Computationally expensive (e.g., Schur complement, reduced

Hessian)

– Preconditioned with variable matrix (i.e., iteration dependent)
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Truncated Krylov subspace methods

• Only orthogonalize with respect to some fixed number k of

previous vectors [Saad, 1983, 1996].

• Hm+1,m banded with upper semiband k − 2.

Matrix with basis vectors Vm not orthogonal.

Can be implemented so that only O(k) vectors are stored.

• Extreme case, k = 3 , Hm+1,m tridiagonal.

If H is SPD, FOM reduces to CG (and Vm automatically

orthogonal).

• Theory for “non-optimal methods” [Simoncini and Szyld, 2005]
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Example: L(u) = −uxx + −uyy + 100(x + y)ux + 100(x + y)uy, on [0, 1]2,

Dirichlet b.c., centered 5 pts. discretization, n = 2500.

0 5 10 15 20 25 30 35 40 45
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

number of its.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

flops

GMRES, Truncated k = 3.

6



Inexact Krylov subspace methods

• At the kth iteration of the Krylov space method use

(H + Dk)vk−1 instead of Hvk−1,

where ‖Dk‖ can be monitored

• [Bouras, Frayssé, and Giraud, CERFACS reports 2000, SIMAX 2005]

show experimentally that as k progresses ‖Dk‖ can be allowed to

be larger; see also [Sleijpen and van der Eshof, 2004]
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Inexact Krylov (cont.)

We repeat: ‖Dk‖ small at first, ‖Dk‖ can be big later.

Convergence is maintained!

• Instead of HVm = Vm+1Hm+1,m we have now

[(H + D1)v1, (H + D2)v2, . . . , (H + Dm)vm] = Vm+1Hm+1,m

• Subspace spanned by v1, v2, . . . , vm is not a Krylov subspace,

but Vm orthogonal (in the full case)
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Theorem for Inexact FOM

[Simoninci and Szyld, 2003]

True residual: rm = b − Hxm = r0 − HVmym

Computed residual(e.g.): r̃m = r0 − Vm+1Hm+1,mym = r0 − Wmym

Let ε > 0. If for every k ≤ m,

‖Dk‖ ≤
σmin(Hm∗

)

m∗

1

‖r̃k−1‖
ε ≡ ℓF

m

1

‖r̃k−1‖
ε ,

then ‖V T
m rm‖ ≤ ε and ‖rm − r̃m‖ ≤ ε.

m∗ being the maximum number of iterations allowed

(Similar results for inexact GMRES)
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Theorem for Inexact Truncated FOM

‖Dk‖ ≤
σmin(Hm∗

)σmin(Vm)

m∗

1

‖r̃k−1‖
ε ≡ ℓTF

m

1

‖r̃k−1‖
ε ,

implies ‖V T
m rm‖ ≤ ε and δm = ‖rm − r̃m‖ ≤ ε.

Notes:

• This result applies in particular to Inexact CG

Better criterion than above for ICG [Du, 2007]

• ℓm can be estimated from problem, if information is available.
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First Experiment

H = diag([10−4, 2, 3, · · · , 100]) Dk = symm [αkrandn(100, 100)]

b = randn(100, 1) We chose ε = 10−8

• Our condition (e.g. for FOM)

‖Dk‖ ≤
σmin(H)

m∗

1

‖r̃k−1‖
ε

is very conservative. In most cases it is too strict.

However, σmin(H) does play a role.
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CG: condition ‖Dk‖ ≤ σmin(H)
m∗

1
‖r̃k−1‖

ε
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Applications:

I. Schur complement systems




A B

BT 0








w

x



 =




f

0



 ,

BT A−1Bx = BT A−1f ; Aw = f − Bx

Hx = b

A−1 not exactly (use Krylov method).
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Applications: I. Schur complement systems (cont.)

• A−1 not exactly (use Krylov method).

• Replace Hv with Hv = BT z
(k)
j , where z

(k)
j is the approximation

obtained at the jth (inner) iteration of the solution to the equation

Az = Bv

• Question is then: How many inner iterations?

i.e., at what value of j stop?

“Translate” conditions on ‖Dk‖ to conditions on norm of inner

residual.

Let rinner
k = Az

(k)
j − Bv be the inner residual

Take ‖rinner
k ‖ <

σm⋆
(Hm⋆

)

‖BT A−1‖m⋆

1

‖r̃fom
k−1 ‖

ε ≡ εinner
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• Two-dim. saddle point magnetostatic problem from

[Perugia, Simoncini, Arioli, 1999], A is 1272 × 1272

• Inexact FOM, m⋆ = 120, ε = 10−4
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Applications:

II. Inexact Preconditioning

Hx = b −→ HP−1x̄ = b, x = P−1x̄

P−1 not performed exactly (use Krylov method)

HP−1vk replaced with Hz̃k, z̃k ≈ P−1vk

Arnoldi relation HP−1Vm = Vm+1Hm+1,m is transformed

into

H[z̃1, · · · , z̃m] = Vm+1Hm+1,m.

Use Flexible Krylov subspace method

rinner
k = vk − P z̃k inner residual

‖rinner
k ‖ ≤

σm⋆
(Hm⋆

)

‖HP−1‖m⋆

1

‖r̃gm
k−1‖

ε ≡ εinner
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For same 2D saddle point, use P =




I 0

0 BT B



 . Solve

BT Bpk = rhs iteratively, m⋆ = 80, ε = 10−9, tolerance εinner
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Some CPU Times: Same Magnetostatic 2D Problem

Outer tolerance: 10−8

Elapsed Time

CPU in seconds of a Sun Enterprise 4500 (Fortran code)

(4 CPU 400MHertz, 2GBytes RAM) CG iterations.

Problem Size Fixed Inner Tol Var. Inner Tol. Var. Inner Tol.

εinner = 10−10 10−10/‖r‖ 10−12/‖r‖

3810 17.0 (54) 11.4 (54) 14.7 (54)

9102 82.9 (58) 62.8 (58) 70.7 (58)

14880 198.4 (54) 156.5 (54) 170.1 (54)
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Applications:

III. Parabolic Control Problems (W i P)

First Example

Inverse problem: Recover control u(x) based on field (state) z(x)

related by the forward problem (3D):

△z = zt, xǫΩ

z = u, xǫ∂Ω

z = z0, xǫΩ/∂Ω, for t = 0
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Discretized forward problem (FD)

Ez− δtNu = c.
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where zi ≈ z(ti), B = (I + δtAh), with Ah discretization of △.
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Optimization problem

min φ =
1

2
‖Qz− dobs‖2

subject to Ez− δtNu = c.

Lagrangian L(z, u, λ) =
1

2
‖Qz− dobs‖2 + λT (Ez− δtNu − c)

Linearize to obtain

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


QT Q 0 ET

0 0 NT

E N 0
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

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

z

u

λ


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= −






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Lλ






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Reduced Hessian

After elimination one has Hu = −p

H u = NT E−T QT QE−1N u = −p.

Use, e.g., with inexact CG, approximating each of the the systems with

E and ET with CG with varying (increasing) tolerance.

MVP Hv

1. Multiply Nv

2. Solve Ez = Nv by solving Ez = Nv with an inner tolerance ǫin1

3. Multiply Qz

4. Multiply QT Qz

5. Solve ET w = QT Qz by solving with an inner tolerance ǫin2

6. Compute NT w
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Experiments

16 × 16 × 16 grid. control u of order 3375, 10 time steps.

fixed fixed decreasing increasing

10−14 10−7 10−3 · ‖r̃k−1‖ 10−8/‖r̃k−1‖

35/23812 41/15250 48/18982 47/8689

Outer iterations / total inners = total matvecs with Laplacian.

Outer ε = 10−7

There is a “delay”

12 more outer iter. than ”exact”, 6 more than fixed

but savings of 64%, and 43%
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Illustration of “delay”, cheaper by a factor of about THREE

- - - - exact CG, —— inexact CG, − · − · − εinner
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One surface of true and recovered model,

and their difference

decreasing ǫinner = 10−3 · ‖r̃k−1‖

error O(10−3)
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One surface of true and recovered model,

and their difference

increasing ǫinner = 10−8/‖r̃k−1‖

error O(10−6)
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Parabolic Control Problems, Second Example

General Lagrangian (using FEM)

Lh(z,u,p) =
1

2
(eT KeT + uT Gu) + pT (Ez + Nu − f)

Reduced system: Hu := (G + NT E−T KE−1N)u = bu

E =










Fh

−Mh Fh

. . .
. . .

−Mh Fh










Fh = Mh + δtAh
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Here we approximate E with En, n sweeps of the Parareal Algorithm

We use our theory to find εinner which determine how many sweeps

we use.

Example. Find u so that z is closest to z∗, subject to zt − zxx = u,

0 < x < 1, t > 0. with initial and boundary data.

Discretize δx = 1/16 and δt = 1/64. System size 1024.
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For the stopping criteria we use ℓ
(1)
n = ℓ

(2)
n = 1 (10−6‖r0‖/‖rm−1‖)
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Conclusions

• Inexact matrix-vector product (or inexact preconditioning)

might be worth trying for your problem

• Truncated methods

might be worth trying for your problem

31



With Valeria Simoncini:

Theory of Inexact Krylov Subspace Methods and

Applications to Scientific Computing

SIAM J. Scientific Computing, v. 25 (2003) 454–477.

On the Occurrence of Superlinear Convergence of Exact

and Inexact Krylov Subspace Methods

SIAM Review, v. 47 (2005) 247–272.

The Effect of Non-Optimal Bases on the Convergence of Krylov

Subspace Methods

Numerische Mathematik, v. 100 (2005) 711-733.

Recent computational developments

in Krylov Subspace Methods for linear systems

Numerical Linear Algebra with Applications, v. 14 (2007) 1-59.

All available at: http://www.math.temple.edu/~szyld

Watch for forthcoming reports on the control problems.
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